

Simple Machines

Simple Machines

A bar that pivots on a fixed point

The fixed point on a lever

Where is the fulcrum on a fishing pole?

Give three examples of everyday levers (extra credit if you give an example of each of the three classes of levers)

How a lever changes the force needed to lift a load (and the tradeoff)

A wheel with a line around it

Give two examples of everyday pullys

A Wheel and Axle must do this in order to be a simple machine

The simple machine we have studied that does not change the direction of a force

How a single pulley makes a job easier

A slanted surface

The two factors an inclined plane trades off to change the way work is done

Give two examples of everyday inclined planes

How the force and distance change if you make a ramp shallower

The way a ramp changes the direction of a force

A post with threads wrapped around it

Two inclined planes placed back to back

Threads on a screw are this type of simple machine

Three examples of everyday wedges

Which screw would reduce the amount of force required the most and why?

A machine with few or no moving parts, to which only one force is applied

The use of force to move an object over a distance

Give an example of work and a non example of work

A way in which a pulley and a lever are alike

How do you make work easier when using a 1st class lever?

